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Abstract. In this communication we study symmetric nuclear matter for the Brueckner-Hartree-Fock ap-
proach, using two realistic nucleon-nucleon interactions (CD-Bonn and Bonn C). The single-particle energy
is calculated self-consistently from the real on-shell self-energy. The relation between different expressions
for the pressure is studied in cold nuclear matter. For best calculations the self-energy is calculated with
the inclusion of hole-hole (hh) propagation. The effects of hh contributions and a self-consistent treat-
ment within the framework of the Green function approach are investigated. Using two different methods,
namely, G-matrix and bare potential, the hh term is calculated. We found that using G-matrix brought
about non-negligible contribution to the self-energy, but this difference is very small and can be ignored
if compared with the large contribution coming from particle-particle term. The contribution of the hh
term leads to a repulsive contribution to the Fermi energy which increases with density. For extended
Brueckner-Hartree-Fock approach the Fermi energy at the saturation point fulfills the Hugenholtz-Van
Hove relation.

PACS. 21.65.+f Nuclear matter

1 Introduction

The evaluation of the saturation properties of nuclear mat-
ter from the basic nucleon-nucleon interaction has been ex-
tensively studied using the Brueckner-type resummation
of ladder diagrams. The Brueckner-Hartree-Fock (BHF)
definition of the self-energy has been extended to account
for the effects of hh ladders in a perturbative way [1–4].
For a consistent treatment, however, one should treat the
propagation of particle-particle (pp) and hh states in the
in-medium scattering equation on the same footing. This
turned out to be a rather ambitious aim. Starting from a
single-particle propagator, which is characterized for each
momentum k by one pole at the quasi-particle energy εqp,
only, the in-medium scattering reduces to the Galitskii-
Feynman approach. If the hh part of the propagator is
ignored, one obtains an equation for the ladder diagrams
for the reducible two-particle Green function that corre-
sponds to the Bethe-Goldstone equation. Using the com-
plete Galitskii-Feynman propagator for nuclear matter at
zero temperature with realistic NN interaction leads to
the so-called pairing instability [5–7].

It has been argued [8] that it would be more natural
to choose the propagator according to the Green function
method, i.e. define the single-particle propagator with a
single-particle energy which includes the real part of the
self-energy as a single-particle potential for particle and
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hole states. This leads to a spectrum which is continuous
at the Fermi momentum, which provided the name “con-
tinuous choice” for this approach. If, however, the single-
particle potential, U = 0 is assumed above kF, then we
have the conventional or gap choice. The continuous choice
leads to an enhancement of the correlation effects in the
medium and tends to predict larger binding energies for
nuclear matter than the conventional choice. It is impor-
tant to point out that, in the present communication we
will focus our attention on the continuous choice. Also, we
use exact Pauli operator to carry out our calculations.

Works using realistic interactions lead to a reason-
able result for the saturation density and the binding en-
ergy at the saturation point. However, in violation of the
Hugenholtz-Van Hove theorem, the resulting Fermi energy
EF at the saturation point is usually very different from
the binding energy per particle E/N . Improvement of the
fulfillment of the Hugenholtz-Van Hove property with re-
spect to the G-matrix approximation is observed when
using the quasi-particle T -matrix approach, or correction
from hh [9,10].

It is known that the exact theory [11–13] should fulfill
certain thermodynamical relations. We shall consider in
the present work the equivalence of two ways of calculating
the pressure in a system at zero temperature:

P = ρ2 ∂(E/N)

∂ρ
(1)

= ρ(EF − E/N), (2)
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where ρ is the nuclear matter density. The relation be-
tween the Fermi energy and the binding energy at the
saturation point is given by [11]

EF = E/N. (3)

This equality of the Fermi energy and the binding energy
per nucleon was derived by Weisskopf [14] on the basis of
the independent particle model [15] which has been con-
sidered to be only a rough approximation. These relations
are satisfied by the exact theory and can also be satisfied
in a perturbative calculation to a given order of the ex-
pansion parameter. The realization of the above relation
is very important, since it would give confidence to the
single-particle properties obtained in the calculations.

Symmetric nuclear matter within the conserving, self-
consistent T -matrix approximation has been studied [16–
18]. This approach involves off-shell propagation of nucle-
ons in the ladder diagrams. They found that the thermo-
dynamic relations are well satisfied unlike for a G-matrix
or a T -matrix approach using quasi-particle propagators
in the ladders diagrams. Also they found that the full T -
matrix and the G-matrix calculations give similar results
for E/N using CD-Bonn and Nijmegen potentials [18].
Baldo and collaborators [19] obtained for the Argonne
v14 potential [20] a saturation density corresponding to
1.565 fm−3 with about the correct amount of binding. This
corresponds to an overestimation of the empirical den-
sity by about 60% but appears completely consistent with
corresponding variational calculations [21] for the same
potential. Gent group [22,23] studied the saturation of
nuclear matter using a fully self-consistent treatment of
short range. They found that the resulting saturation den-
sities are closer to the empirical result when compared
with (continuous choice) Brueckner-Hartree-Fock values.
Arguments for the dominance of short-range correlations
in determining the nuclear-matter saturation density are
presented. It was argued in ref. [22] that the repulsive ef-
fect due to the inclusion of the hh scattering might be able
to shift the saturation point close to the empirical value.
Frick [24] studied the properties of symmetric nuclear mat-
ter at finite temperature using SCGF approach. He found
that the Hugenholtz-Van Hove theorem is well fulfilled in
the HF and the SCGF approximation, while it is badly vio-
lated in the BHF approach. He also gets on the saturation
density in the SCGF approximation, ρsat = 0.31 fm−3.
This value is still almost twice as large as the empirical
saturation density (ρ0 = 0.17± 0.02 fm−3).

Our main aim of the present communication is to in-
vestigate the relation between the binding energy and the
Fermi energy taking into account different expressions for
the pressure in cold nuclear matter with the Brueckner
scheme and extended BHF (EBHF) approach. Through-
out this paper two realistic NN interactions will be used
and compared with other approaches. The present pa-
per also contains further developments on the problem at
hand. Finally, using two different ways, we shall calculate
the self-energy for hh term.

2 Formalism

The integral equation for the Brueckner G-matrix is
given by

〈k1k2 | G(ω) | k3k4〉 = 〈k1k2 | v | k3k4〉

+Σk′

3
k′

4
〈k1k2 | v | k

′

3k
′

4〉 ×
[1−ΘF(k

′

3)][1−ΘF(k
′

4)]

ω − εk′

3
− εk′

4

×〈k′3k
′

4 | G(ω) | k3k4〉, (4)

where ΘF(k) = 1 for k < kF and zero otherwise. The
product Q(k, k′) = [1 − ΘF(k)][1 − ΘF(k

′)], appearing in
the kernel of eq. (4) enforces the scattered momenta to lie
outside the Fermi sphere, and it is commonly referred to
as the “Pauli operator”. The G-matrix depends paramet-
rically on the starting energy ω. The standard Brueckner
approximation for the nucleon self-energy, has the follow-
ing expression:

ΣBHF(k, ω) = ΣHF(k) +Σ2p1h(k, ω)

= Σk′<kF
〈kk′|G(εk + εk′)|kk′〉A , (5)

where εk is the self-consistent single-particle energy, label
A means antisymmetrization, ΣHF(k) is the Hartree-Fock
self-energy (it is independent of energy) and Σ2p1h(k, ω)
is the self-energy for the two-particle one-hole (2p1h). In
the BHF approach, (4) and (5) are solved self-consistently
(for more information, see [3,25–29]).

The self-consistent Green-function (SCGF) approach
differs in two main aspects from the BHF approximation.
Firstly, within SCGF particles and holes are treated on an
equal footing, whereas in BHF only intermediate particle
states are included in the ladder diagrams. This aspect
ensures thermodynamic consistency, e.g. the Fermi energy
or chemical potential of the nucleons equals the binding
energy at saturation (i.e. it fulfills the Hugenholtz-Van
Hove theorem). In the low-density limit BHF and SCGF
coincide. As the density increases the phase space for hh
propagation is no longer negligible. Second, the SCGF
generates realistic spectral functions, which are used to
evaluate the effective interaction and the corresponding
nucleon self-energy.

The contribution of the hh terms to the self-energy in
a kind of perturbative way is given by [30,31]

Σ2h1p
G (k, ω) =

∫

∞

kF

d3p1

∫ kF

0

d3h1 d
3h2

×
〈k, p1 | G | h1, h2〉

2

ω + εp1
− εh1

− εh2
− iη

, (6)

which is graphically represented in fig. 1. If we take only
the contribution coming from fig. 1b, in this case the self-
energy for the hh term is given by

Σ2h1p
v (k, ω) =

∫

∞

kF

d3p1

∫ kF

0

d3h1 d
3h2

×
〈k, p1 | v | h1, h2〉

2

ω + εp1
− εh1

− εh2
− iη

. (7)
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Fig. 1. Diagrammatic representation of the contribution two-
hole one-particle Σ2h1p to the self-energy and of the type of di-
agrams of the original perturbation series that it contains. An
upward pointing arrow is associated with a particle state and a
downward pointing arrow with a hole state. Horizontal dashed
lines correspond to the antisymmetrized nucleon-nucleon inter-
action v and the wavy lines indicate the G-matrix.

Real and imaginary parts of the self-energy for two-
hole one-particle (2h1p) are related to each other by a
dispersion relation of the form [31]

ReΣ2h1p(k, ω) =
1

π

∫

∞

−∞

ImΣ2h1p(k, ω′)dω′

ω′ − ω
. (8)

The same is true also for the 2p1h.

Assuming that the self-energy for a nucleon in an infi-
nite nuclear matter is given, the Dyson equation leads to
a single-particle Green function of the form

g(k, ω) =
1

ω − k2

2m
−Σ(k, ω)

. (9)

If one compares this solution with the general Lehmann
representation

g(k, ω) = lim
η→0

(
∫ εF

−∞

dω′
Sh(k, ω

′)

ω − ω′ − iη

+

∫

∞

εF

dω′
Sp(k, ω

′)

ω − ω′ + iη

)

, (10)

one can easily identify the spectral functions Sh(k, ω) and
Sp(k, ω) for hole and particle strength, respectively [3].

In the EBHF approximation [3], we assume a single-
particle spectrum ε̃k which is identical to the self-
consistent BHF spectrum, but shifted by a constant C1,
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Fig. 2. The binding energy per nucleon and the Fermi energy
as a function of the density ρ, all for the CD-Bonn poten-
tial. The binding energy for the BHF calculation (solid line),
the BHF from ref. [18] (dotted line), the T -matrix calculation
(dot-dashed line) [18] and the EBHF calculation (dashed line)
are shown. The corresponding Fermi-energies results are de-
noted by the same lines with stars, squares and circles for the
BHF, EBHF and T -matrix from ref. [18], respectively. The box
indicates the empirical nuclear binding energy per nucleon.

which ensures the self-consistency for k = kF

ε̃kF
= εBHF

kF
+ C1

=
k2
F

2m
+ΣBHF(kF, ω = ε̃kF

)

+Σ2h1p(kF, ω = ε̃kF
). (11)

The constant C1 is indeed just a constant shift to ac-
count for the contribution of the 2h1p term in the self-
energy. It is calculated in a self-consistent manner from
relation (11). It is used only for the redefinition of the
single-particle spectra in the Bethe-Goldstone equation
and the 2h1p term. It has been introduced to avoid a
complete recalculation of the self-energy.

This shifted single-particle spectrum is also used in the
Bethe-Goldstone equation. Also the quasi-particle energy
is given by

εqp(k) =
k2

2m
+ΣBHF(k, ω = εqp(k))

+Σ2h1p(k, ω = εqp(k)). (12)

The total energy per nucleon for EBHF is calculated as

E

A
=

∫

d3k
∫ εF

−∞
dω Sh(k, ω)

1
2

(

k2

2m
+ ω

)

∫

d3k n(k)
. (13)

3 Results and discussions

Figure 2 shows the binding energy in the different ap-
proaches as a function of the density in symmetric nuclear
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Fig. 3. The binding energy per particle calculated for Bonn
C potential, using BHF (solid line) and EBHF (dotted line)
as a function of density. The corresponding Fermi energies are
denoted by the same lines with circles for BHF and squares for
EBHF. The box describes the area in which nuclear saturation
is expected to occur empirically.

matter compared to the corresponding T -matrix results
from [18] using the CD-Bonn potential [32]. The T -matrix
gives smaller binding energies and smaller Fermi energies
than the BHF calculation. The repulsive effect increases
with density. It can be assigned to the hh scattering con-
tributions that are neglected in the BHF approximation.
The relative importance of the hh scattering terms to the
total energy grows, because the accessible space for the
holes increases with increasing of the density. At low den-
sities the BHF, EBHF and T -matrix results converge as
expected. As we see from fig. 2, the Fermi energy obtained
for different densities depends very much on the kind of
chosen approximation. The EBHF and T -matrix are the
Hugenholtz-Van Hove condition at the saturation point
satisfied. As we see from fig. 2, there is excellent agree-
ment between our calculations for binding energy using
BHF approximation and Bożek’s calculations [18] under
the same approach (BHF).

For Bonn C [33] the EBHF is the Hugenholtz-Van Hove
condition at the saturation point satisfied (fig. 3). The
difference between EF and E

N
at the saturation point is

zero with numerical accuracy for the EBHF calculations
(at saturation density ρsat = 0.195 fm−3 is E

N
= EF =

−22.8MeV), and becomes as large as 18MeV for the BHF
approach. The saturation density for the EBHF is close to
the empirical saturation density. It was argued in ref. [22]
that the repulsive effect due to the inclusion of the hh
scattering might be able to shift the saturation point close
to the empirical value.

Stiff potentials like Bonn C [33], that are character-
ized by a strong repulsive core, usually saturated around
the correct density, but do not produce enough binding
energy. In contrast, potentials like the CD-Bonn poten-
tial [32] provide enough or even too much binding energy,

Table 1. Saturation density, binding energy, Fermi energy and
compression modulus for different approximations discussed in
the text.

ρsat E/N EF Knm

(fm−3) (MeV) (MeV) (MeV)
BHF 0.228 −16.52 −34.43 157.7

Bonn C
EBHF 0.195 −22.8 −22.8 184
BHF 0.277 −22.86 −46.5 137.6

CD-Bonn
EBHF 0.43 −27.8 −27.8 295
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Fig. 4. Pressure as a function of density obtained from two
different expressions, eqs. (1) and (2). The dash-dotted and the
solid-with-circles lines represent the two results for the pressure
in the HF calculation. The dotted-with-squares line represents
the results in the BHF calculation. The dashed and the dashed-
with-triangle-up lines represent the two results in the EBHF
calculation. The dot-dashed line represents the T -matrix cal-
culation from ref. [18]. The dotted line corresponds to the BHF
calculation from ref. [18]. The results in this figure have been
derived from the CD-Bonn interaction.

but their soft cores yield too dense systems (see table 1). In
this way, an increase in binding energy is accompanied by
an increase of the saturation density, as was first pointed
out by Coester and collaborators [34].

In table 1 are shown the corresponding binding ener-
gies and saturation densities for different approximations,
using CD-Bonn and Bonn C potentials. The difference be-
come as large as 23.6MeV at ρsat = 0.277 fm−3 for the
BHF approach, using the CD-Bonn potential.

The pressure can be calculated for a range of den-
sities by two methods (eqs. (1) and (2)) which should
be equivalent. However, only for the consistent approxi-
mation we find an approximate equivalence between the
two formulae, with very good agreement for the Hartree-
Fock calculation (figs. 4 and 5). The BHF violates badly
the Hugenholtz-Van Hove relation for pressure at zero
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Fig. 5. Pressure obtained as a derivative of the binding energy,
eq. (1), for the HF calculation (dash-dotted line) as a function
of the density ρ. The corresponding pressures obtained using
eq. (2) are denoted by dotted line for HF, solid line for BHF and
dashed line for EBHF calculation, all for the Bonn C potential.

temperature. The disagreement is reduced but not cured
completely when using EBHF approach.

The slope of the pressure as a function of density de-
fines the compression modulus of nuclear matter

Knm = 9
∂P

∂ρ
, (14)

which should be positive at the saturation point as a con-
dition of stability. The nuclear-matter compression mod-
ulus is an important quantity in astrophysics and heavy-
ion physics. The values of Knm obtained in the different
approaches using CD-Bonn and Bonn C potentials are
shown in table 1. We find that, at the saturation point
using EBHF, Knm = 184MeV for Bonn C. A recent anal-
ysis of the giant monople resonance in heavy nuclei [35]
yields an experimental estimate for the compression mod-
ulus, Knm = 210 ± 30MeV. For Bonn C interaction the
compression modulus obtained in EBHF agrees reason-
ably well with this value. For CD-Bonn potential and us-
ing EBHF approach, the value of Knm obtained is larger
than in usual nuclear matter because the saturation point
is more than twice the empirical saturation density. The
Gent group [22,36] finds that at the saturation point us-
ing the (continuous choice) BHF, Knm = 154MeV for
Reid93 and Knm = 148MeV for the separable Paris po-
tential. Also they found that Knm = 177MeV for Reid93
and Knm = 216MeV for separable Paris potential in the
self-consistent treatment of short-range correlations.

Results for the 2h1p contribution to the self-energy,
Σ2h1p, are displayed in figs. 6 and 7. For comparison we
have plotted the self-energy for 2p1h in the same figs. 6
and 7. In the first case we focus on the self-energy for 2h1p

using G-matrix (Σ2h1p
G as in eq. (6)). In the second case

the self-energy for 2h1p is calculated using bare potential
(Σ2h1p

v as in eq. (7)). The imaginary part of Σ2h1p is differ-
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Fig. 6. The real part of the 2h1p (eqs. (6) and (7)) contri-
bution to the self-energy as a function of ω evaluated for the
CD-Bonn and Bonn C potentials assuming kF = 1.36 fm−1

and momentum k = 0.9kF. For the sake of comparison, the
self-energy for 2p1h is plotted in the same figure. Results are
displayed for 2h1p from eq. (6) for CD-Bonn potential (solid
line), 2h1p from eq. (7) for CD-Bonn potential (dotted line),
for 2p1h for CD-Bonn potential (dashed line), for 2p1h for
Bonn C potential (dash-dotted line), for 2h1p from eq. (6) for
Bonn C (dot-dashed line) and for 2h1p from eq. (7) for Bonn
C potential (dashed line).
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Fig. 7. Same as in fig. 6, but for the imaginary part.

ent from zero only for energies ω below the Fermi energy,
in case 2p1h is equal to zero below the Fermi energy. The
conservation of the total momentum in the two-nucleon of
the G-matrix in (6), h1 +h2 = k+p1, leads to a minimal
value of ω at which this imaginary part is different from
zero. Due to these limitations, the imaginary part inte-
grated over all energies is much smaller for Σ2h1p than
for Σ2p1h, displayed in the same figure. Since the imag-
inary part of Σ2h1p is significantly smaller than the one
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of Σ2p1h, the same is true also for the corresponding real
part. The contribution of the hh term in the self-energy
is smaller than the contribution of the pp term, so if one
takes G = v in the case of hh term, this will make a small
shift in the results.

4 Conclusion

We have investigated the saturation of nuclear matter for
different approximations using the CD-Bonn and Bonn C
potentials. We find that the EBHF is conserving and ful-
fills the Hugenholtz-Van Hove relation.

I would like to thank Prof. Dr. H. Müther for useful discussions
and guidance. Also I would like to thank Dr. M. Abdel-Aty for
a critical reading of the manuscript.
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3. T. Frick, Kh. Gad, H. Müther, P. Czerski, Phys. Rev. C

65, 034321 (2002).
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25. E. Schiller, H. Müther, P. Czerski, Phys. Rev. C 59, 2934

(1999); 60, 059901 (1999)(E).
26. K. Suzuki, R. Okamato, M. Kohno, S. Nagata, Nucl. Phys.

A 665, 92 (2000).
27. M.I. Haftel, F. Tabakin, Nucl. Phys. A 158, 1 (1970).
28. T. Cheon, E.F. Redish, Phys. Rev. C 39, 331 (1989).
29. F. Sammarruca, X. Meng, E.J. Stephenson, Phys. Rev. C

62, 014614 (2000).
30. P. Grange, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365

(1987).
31. C. Mahaux, R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
32. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53,

R1483 (1996).
33. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
34. F. Coester, S. Cohen, B. Day, C.M. Vincent, Phys. Rev. C

1, 769 (1970).
35. J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl.
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